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Introduction

Predicting fault locations and fault properties such as geometry, horizontal and vertical length, connectivity
and displacement has been important to the mining industry for many centuries because of the ability of faults to
conduct fluids and therefore host ore deposits, and for their tendency to complicate mining operations, particu-
larly coal mining. More recently, it has become essential to understand faulting and to predict fault locations,
geometries, orientations and properties in the context of oil and gas exploration and exploitation. As a conse-
quence, much of our current understanding of faults is based on research driven by industrial needs, particularly
since the 1980s when three-dimensional (3D) reflection seismic data sets became available. Since then we have
seen an impressive improvement in seismic data quality and data enhancement methods that, together with
field-based studies and physical and numerical modeling, has led us to the current understanding of faults and
faulting. At a larger scale (. 1�10 km) than that concerning hydrocarbon production and most mining opera-
tions, faults or fault zones affect the entire brittle crust and link with deeper lithospheric shear zones and may
generate devastating earthquakes during their active lifetime. However, they all initiate as small features and
grow into larger faults, fault zones and fault networks. The process by which faults form and grow and the
related complications and fault geometries are the main focus of this chapter. This review is largely presented in
the context of the normal fault regime, but most principles and properties apply also to strike-slip and thrust
settings.

What is a fault?

A fault represents a narrow physical discontinuity in rock and in the displacement field associated with the
deformation, exhibiting predominantly shear (wall-parallel) displacement. Small-scale structures (e.g. magni-
fied part of Fig. 8.1A) that fit this definition are usually referred to as shear fractures, while a fully developed
fault is a composite structure that consists of a multitude of smaller-scale structures in a zone, together with
one or more major slip surfaces and/or a fault core along which most of the offset is localized. Hence faults as
observed in outcrop are rarely simple discrete “planes”, but rather irregular curvitabular volumes of variably
deformed rocks. Typical elements found in such volumes are subsidiary faults, fractures, veins, gouge, breccia,
deformation bands and volumes or lenses of less- or undeformed host rock. Large faults are well known to
consist of multiple smaller fault elements in a zone (e.g. Braathen et al., 2009); hence, the term fault zone has for
a long time been used to emphasize the fact that large faults are composite structures consisting of a multitude
of smaller-scale faults and associated structures (Caine et al., 1996; Childs et al., 1996; Wibberley et al., 2008;
Wibberley and Shipton, 2010).

119
Regional Geology and Tectonics.

DOI: https://doi.org/10.1016/B978-0-444-64134-2.00007-9 © 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/B978-0-444-64134-2.00007-9


Fault anatomy

The term fault zone is also used for smaller (outcrop-scale) faults that display composite structural elements, par-
ticularly where several slip surfaces can be discerned (Childs et al., 1996; 2009; Wibberley et al., 2008) (Fig. 8.1A).
An example of a typical fault zone of this kind is shown in Fig. 8.2, where several closely arranged slip surfaces in
a reverse fault zone have accommodated shortening of the Jurassic Entrada Sandstone in the Sevier foreland, Utah.
The internal anatomy of many faults or fault zones fits the simple twofold classification of a central fault core and
an enveloping damage zone (Caine et al., 1996) (Fig. 8.1B). Here, the fault core consists of highly sheared rocks that
may be represented by fault gouge, cataclasite or breccia in which the original structure of the rock has been
strongly masked or destroyed (Fig. 8.3). Its nature depends on the rocks involved; shale would easily create a zone
of clay smear, while limestone, sandstone and igneous rocks typically develop different kinds of cataclasites and
breccias. Large faults that have experienced late reactivation at shallow crustal levels may show a central core of
noncohesive material within a more cohesive cataclastic outer core that formed during fault motions at greater
depth (Fig. 8.3C). Variably deformed lenses of the wall rocks may form an integral part of the fault core (Fig. 8.1B),
or when above a certain size, may be considered as a separate architectural element of a fault.
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FIGURE 8.1 Conceptualized illustrations of a complete fault and its different elements. (A) Slip localized on two or more narrow high-
strain zones (slip surfaces or fault cores shown in black). A subsidiary footwall shear fracture is highlighted. (B) High-displacement fault
showing a more extensively sheared central core with a surrounding low-strain damage zone. Source: (A) Figure inspired by Childs, C., Nicol,
A., Walsh, J.J., Watterson, J., 1996. Growth of vertically segmented normal faults. J. Struct. Geol. 18, 1389�1397.

FIGURE 8.2 Example of a fault zone (reverse) in the Entrada Sandstone, Southern Utah. Rotation of layering in the zone and local normal
drag along the bounding faults can be interpreted as evidence for breaching of a fault-propagation fold.
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In the fault core-damage zone terminology, a fault core is completely surrounded by the damage zone, which is
a zone of relatively low-displacement structures, notably shear fractures, but also veins (mineral filled extension
fractures), short joints, deformation bands and/or stylolites (Fig. 8.1). Large faults may also contain smaller faults
with their own damage zones, contained within the large damage zone of the first-order fault, as shown schemat-
ically in Fig. 8.4. Hence, the definition of a damage zone is to some extent scale-dependent. The relationship
between fault displacement and damage zone width, however, seems to be rather scale-independent over a large
range of sizes, meaning that the ratio between damage zone width and displacement is statistically the same for
small and large faults. This emerges from plots such as the one shown in Fig. 8.5, which suggests a thick-
ness�displacement ratio of 1:100 (displacement being 100 times the damage zone thickness). Note however that
more specific data sets may deviate from this global rule (e.g. data from porous sandstones; Schueller et al.,
2013), so establishing a relationship for specific areas and parts of the stratigraphy is always recommended. The
scatter is also very large. Therefore, estimating displacement from damage zone thickness involves a large uncer-
tainty. Field observations also show that damage zone width can vary greatly both vertically and laterally along
a single fault due to variations in lithology, fault geometry and growth/linkage history. Fault core data from a
variety of fault sizes also show a general increase in fault core thickness with increasing fault displacement, but
with a similar two orders of magnitude uncertainty (Fig. 8.5).

The anatomy of damage zones is also of interest, and their inner part generally contains a higher density of small-
scale structures than do their peripheral part. An inner damage zone with higher density of structures and more
complex structural relations can sometimes be distinguished from an outer low-strain damage zone (e.g. Cerveny
et al., 2004; Berg and Skar, 2005). However, statistical evaluation of damage zones from extensional faults in porous
sandstones (Schueller et al., 2013) has shown that most faults show a gradual decay in deformation band frequency
away from the fault core, and that statistically this decrease can be described as logarithmic. Schueller et al. (2013)
also suggest a scale-invariant growth process where the average density of deformation bands (156 9 bands/m) is
statistically independent of fault displacement. Further, the distribution of deformation bands within the damage
zone is qualitatively similar for small and large faults. Fault damage zones in nonporous or low-porosity rocks show
a similar decay in fracture density away from the fault core (e.g. Caine et al., 1996; Faulkner et al., 2011).
Furthermore, Savage and Brodsky (2011) suggested that the fracture density decay inside damage zones can be
described by a power law with an average decay rate of approximately 0.8. Johri et al. (2014) numerically modelled

FIGURE 8.3 Three examples of fault cores in different lithologies. (A) Fault core with damage zone developed in Cretaceous fluvial sedi-
ments (near Salina, Utah, ca. 20 m offset). The core consists of crushed sandstone (cataclastic) and smeared clay-coal layers. (B) Fault with
B100 m offset developed in shales of the Green River Formation, Utah. (C) Central noncohesive fault core surrounded by older flinty catacla-
site as part of a several hundred meters�wide fault core in metamorphic rocks. Lærdal-Gjende fault, Norway, with several kilometers offset.
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such a power-law decrease in fracture intensity away from the fault core. However, many such data sets are
extracted from small faults with meter-scale displacement or less and do not reflect the complexity and variations
associated with fault damage zones in nonporous rocks in general.

Fault drag

The zone of fault-related folding along many faults, known as drag folding, is not considered as part of the fault
itself, but nevertheless adds to its total displacement. Drag develops where a layering is oriented at an angle to
the slip vector of the fault, for example horizontal beds affected by a normal or reverse fault. The term normal
drag (normal in the sense of being common) is used about markers that are convex in the direction of slip.
Similarly, reverse drag applies where markers are concave in the direction of slip (Grasemann et al., 2005). In
other words, drag is considered to be normal when rotated into the fault (zone) in the same way that layers in
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FIGURE 8.5 Fault displacement plotted against fault core and damage zone thickness in logarithmic diagram. Note that the fault core is
on average two orders of magnitude thinner than the damage zone. Source: Modified from Fossen, H., 2016. Structural Geology, second ed.
Cambridge University Press, Cambridge.
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FIGURE 8.4 Schematic illustration of fault hierarchy, from major first-order fault with several kilometers of displacement down to the
scale of individual fractures or deformation bands. Three orders of damage zones are indicated, observable at different scales.
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metamorphic rocks are rotated into ductile shear zones (Ramsay, 1980). Note that normal and reverse drag are
merely geometrically descriptive terms, so that both normal and reverse drag can be associated with normal
faults, for example. Also note that normal drag along a reverse fault is geometrically similar to reverse drag along
a normal fault. For instance, the drag along the reverse faults in Figs 8.2 and 8.6 is normal, while the km-scale
drag related to the large normal fault in Fig. 8.7 is reverse. Also note that there is normal drag in a narrow zone
along the main fault in the Jurassic section in Fig. 8.7.

The drag zone can vary from less than a meter to several kilometers in width (Fig. 8.7) and typically varies
vertically as layers of different mechanical properties get involved, but also laterally in many cases. In general,
shales and clay-rich sequences tend to develop drag more easily than massive competent units (well-lithified
sandstones and limestones). Drag zones that are wide enough to be imaged on seismic data are typically wider
in the hanging wall than in the footwall.

Drag may have several causes (Grasemann et al., 2005) and should only be used as a descriptive term about
fault-adjacent layer rotation (folding). While friction along the fault core was typically called for in the older liter-
ature, fault-propagation folding is now considered to be a more common drag-forming mechanism. In the fault-
propagation model, for which there is abundant evidence from many field examples, physical experiments and
numerical models, a precursory fold forms by distributed deformation ahead of the propagating fault tip, and
the fold becomes a drag fold the moment the tip propagates through the fold (Fig. 8.6). Impressive examples of
Laramide-age fault-propagation monoclines underlain or cut by upward propagating basement faults are
exposed on the Colorado Plateau (e.g. Zuluaga et al., 2014). Drag folds can also form along an existing fault due
to fault bends and geometric complications caused by fault linkage processes. Because these complications tend
to vary rapidly both laterally and vertically along faults, so does the appearance of drag. Rollover folds are a spe-
cial case of reverse drag explained by listric normal fault geometry and are typically much larger than many
other types of drag folds. Finally, differential compaction across major faults can also produce or add to large-
scale drag geometries. Drag folds are particularly important in hydrocarbon reservoirs where drag can signifi-
cantly change the communication pattern across faults.

(A)

(B)

(C)

FIGURE 8.6 Formation of normal drag associated with a reverse fold as a result of fault-propagation folding. The fold forms ahead of the
propagating fault tip (a-b) and is at some point dissected by the fault (lower part of B and C). Trishear modeling (Erslev, 1991). Source:
Modified from Fossen, H., 2016. Structural Geology, second ed. Cambridge University Press, Cambridge.
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Fault orientations, stress, strain and kinematics

Relation between faults and stress

Faults initiate with orientations that are largely controlled by the orientations of the principal stretching direc-
tions, which for structures involving small offsets and negligible block rotations can be correlated with principal
stress directions (σ1, σ2, σ3). A simple relationship between stress and faults for isotropic rocks was used by
Anderson (1951) as he defined his three tectonic regimes: normal, thrust and strike-slip (Fig. 8.8). Using the
Coulomb criterion and a coefficient of friction of 0.6 (typically taken to be representative for common rock types,
Byerlee’s Law) an angle of 30 degrees can be predicted between the maximum compressive stress (σ1) or shorten-
ing direction and the fault. This means that normal faults (σ15σv) can be expected to dip at around 60 degrees,
while reverse faults dip at around 30 degrees (σ15σH), unless guided by preexisting structures. Strike-slip faults
on the other hand are predicted to be vertical in this scheme.

The simple Andersonian plane-strain model for faulting shown in Fig. 8.8 is founded on the assumption that
the three principal stresses are always vertical or horizontal. In nature many, if not most, faults show evidence of
oblique-slip, with components of both strike-slip and dip-slip displacement. Important reasons for this rotation of
the principal stress axes are stress perturbations caused by mechanical strength variations, notably around weak
faults and fractures, by slip along nonplanar faults, by slip along foliations, by rock anisotropy in general and by
fault interaction in both the horizontal and vertical directions.

FIGURE 8.7 Example from the northern North Sea rift
of how faults of different sizes typically appear on reflec-
tion seismic sections. The main fault offsets the rift base-
ment by several kilometers, while its offset through the
Jurassic section is only a few hundred meters, reducing to
less than a hundred meters at the top Cretaceous (TC) level.
Smaller antithetic faults in the hanging wall are magnified
(upper left), as are nontectonic faults in the Cenozoic post-
rift package (upper right). These shallow faults are related
to sediment compaction and dewatering. The magnified
images show that there is room for different fault interpre-
tations, with a zone of uncertainty of at least 100 m in width
in this particular example that contains the fault damage
zone and potential fault complications. Examples of normal
and reverse drag are indicated. BCU, Base Cretaeous
Unconformity. Source: Seismic data, courtesy of CGG.
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In naturally deformed rocks, the orientation of the principal stresses is well constrained where faults form two
conjugate sets with opposite shear sense. Conjugate in this sense implies that the two sets were active at the
same time, so that they locally or in a limited region show mutual crosscutting relationships. In this case, the
shortening direction bisects the acute angle between the two sets of shear structures and can, for small displace-
ments, be interpreted to represent σ1. Consequently, σ2 parallels their line of intersection, and σ3 bisects the
obtuse angle between the shear structures, as shown in Fig. 8.8.

Where fault slip data (fault orientation and direction and sense of slip, and if possible, amount of displace-
ment) can be collected for a local fault population, paleostress or strain axes can be estimated by means of stress
inversion methods (Angelier, 1979, 1984; Etchecopar et al., 1981) or kinematic analysis (Marrett and
Allmendinger, 1990). Stress inversion analyses are based on the Wallace�Bott hypothesis, which makes the
assumption that slip on a surface will occur in the direction of maximum resolved shear stress. Applying this
hypothesis to measured fault slip data enables us to estimate the orientations of the principal stresses (Angelier,
1994). However, it can be argued that any fault analysis that is based on measurements of slip surfaces, slip
directions and sense of slip are, strictly speaking, a kinematic approach that primarily gives the principal shorten-
ing (P) and extension (T) axes, as outlined by Marrett and Allmendinger (1990), and that stress can only be indi-
rectly correlated with these axes, assuming no rotation of structures during deformation.

Strain and fault orientation patterns

Simple conjugate sets of faults are compatible with plane strain, where the length of the intermediate strain axis
Y remains unchanged during deformation. For the normal fault regime, the horizontal extension direction is then
perpendicular to the (average) strike of the faults, and for a thrust belt setting, the principal horizontal shortening
direction is perpendicular to the strike of the faults. Both natural fault populations and those formed during physi-
cal and numerical experiments show some variation in strike direction. Plane-strain experiments show such varia-
tions very well (Fig. 8.9B and C), and there are many examples of natural fault populations at different scales that
contain faults or fault segments at low angles to the extension or shortening direction (e.g. Fig. 8.9A). In detail, we
usually find fault bends and segments of somewhat different orientations, and zigzag-like geometries also occur
in both numerical models (Cowie et al., 2000; Finch and Gawthorpe, 2017; Deng et al., 2017) and in nature.

Two or more double sets of conjugate faults can also result from a single deformation episode, reflecting 3D
(or triaxial) strain of the flattening type with extension along two principal strain axes (X and Y) (Oertel, 1965;
Krantz, 1988; Reches, 1988; Healy et al., 2015) (Fig. 8.10) or doming with shortening in two directions. Hence,
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FIGURE 8.8 Relation between the principal stress orientations and faults in the three Andersonian regimes, as illustrated by conjugate
fault sets. These idealized figures show a close relationship between principal stress (or strain) axes and conjugate faults. Principal stress axes
are indicated, but note that strictly speaking, these axes are instantaneous strain axes. Source: Modified from Fossen, H. 2016. Structural Geology,
second ed. Cambridge University Press, Cambridge.
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FIGURE 8.9 Fault populations formed under approximate plane-strain conditions. (A) Whakatane Graben, New Zealand. This graben has
been interpreted to have a slight transtensional character, but is close to pure extension. (B) Plaster model. (C) Detailed view of clay model. In
all the models the faults trend nearly perpendicular to the extension direction. Some local variations in strike orientation can be related in
most cases to their growth history. Source: (A) Modified from Lamarche, G., Barnes, P.M. Bull, J.M., 2006. Faulting and extension rate over the last
20,000 years in the offshore Whakatane Graben, New Zealand continental shelf. Tectonics, 25. doi:10.1029/2005tc001886. (B) Redrawn from Blækkan, I.,
2016. Evolution of normal faults and fault-related damage: insights from physical experiments, Master thesis, University of Bergen. 86 pp. (C) redrawn
from picture in Ackermann, R.V., Schlische, R.W. & Withjack, M.O., 2001. The geometric and statistical evolution of normal fault systems: an experimen-
tal study of the effects of mechanical layer thickness on scaling laws. J. Struct. Geol. 23, 1803�1819.
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FIGURE 8.10 Idealized relationship between fault patterns and strain (or stress), shown for the normal fault regime. Simple Andersonian-
style conjugate fault sets (A) result from plane strain, while orthorhombic (B) or polymodal pattern result where the resulting strain is
nonplanar (i.e. 3D or triaxial strain). Figures (A, C, and D) show initial fracture pattern in relation to principal stress axes. Figures (B, D
and E) show the appearance of the fractures (faults) in spherical projections and also show the strain axes (X$Y$Z).
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3D strain of this kind results in a large variety in fault orientation caused by a single phase of deformation.
This is the case where the different sets mutually crosscut each other; in contrast, if one set (orientation) sys-
tematically crosscuts another within a region, we are more likely looking at two phases or stages of
deformation.

Preexisting structures have been shown to influence fault orientation to various degrees, depending on
their orientation (strike and dip), size, geometry and strength (e.g. Sibson, 1985). Two general cases can be
envisioned in the context of a sedimentary basin: one where a sedimentary sequence is exposed to two
phases of deformation with different extension directions, and a single phase where earlier structures occur
in the basement beneath the basin. The first case has been explored through physical modeling by Henza
et al. (2010), who looked at changes in extension direction at up to 45 degrees. Their experiments show that
the preexisting structures are obliquely reactivated together with the formation of new faults that variably
cut or terminate against older faults. The result is a complex fault pattern with a large variation in fault
trends. The effect of the angle between the two extension directions would vary for natural cases, depend-
ing on fault properties, length, dip and planarity, but the experiments illustrate well how composite fault
patterns may emerge from two deformation phases with extension directions differing by up to 45 degrees.
Further complications occur when faults are reactivated in a different tectonic regime, for instance normal
faults reactivated as reverse faults (Kelly et al., 1999; Marshak et al., 2000; Zuluaga et al., 2014). For
instance, reverse faults preferentially form at a lower dip angle than normal faults (Fig. 8.8) and may utilize
preexisting normal faults to a lesser extent, forming hanging-wall shortcuts in their upper parts (e.g.
Amilibia et al., 2008).

The second case, where an undeformed sedimentary sequence overlies a basement with preexisting structures,
reactivation and upward propagation of basement faults can occur. Again, reactivation is highly dependent on
orientation, geometry and strength of the preexisting basement structures. The strength of a preexisting shear
zone or fault core in metamorphic basement rocks is difficult to predict and would also vary laterally and verti-
cally. There are many examples where basement structures are reactivated in contraction, strike-slip and exten-
sion (e.g. Bailey et al., 2005; Bird et al., 2015; Phillips et al., 2016; Peace et al., 2018). In general, reactivation of
basement structures involves a combination of upward propagation of the basement fault and nucleation of new
faults above the basement structure that may link up and form a composite fault zone as strain accumulates (see
section ‘Fault Growth’ below). Fault-propagation folding commonly occurs in the overlying sedimentary
sequence during basement fault reactivation, both in extensional (Sharp et al., 2000) and contractional (Zuluaga
et al., 2014) settings.

Displacement distributions on faults

Isolated faults tend to show a gradual increase in displacement from the tipline towards a central point, and
ideally the tipline is more or less elliptical, as shown in Fig. 8.11. This simple elliptical pattern of displacement
contours is modified in mechanically stratified rocks. For horizontal layering, the elliptical shape is replaced by a
more rectangular shape because of the vertical growth restriction imposed by the layering. For example, a close
to circular tipline may be established as a fault initiates in a strong layer (Fig. 8.12A), but ellipticity changes dra-
matically when the radially propagating fault reaches the top and bottom of the strong layer: the layer bound-
aries impose restrictions on fault tip propagation (Fig. 8.12B). At some point, the fault will break through the
restricting layer boundary, and the ellipticity decreases again. Further complications arise from fault linkage, as
discussed below.

Displacement profiles across faults show how displacement varies in the horizontal or vertical direction, and
how the maximum displacement (Dmax) along such profiles generally increases with fault length (or height if
measured in the vertical direction). This relation has been quantified by field investigations and seismic data
interpretation. Global data that span many orders of magnitude show an approximately linear relationship
between fault length and displacement (D� 0.3L, Fig. 8.13). In detail, the data show a considerable spread, about
2�3 orders of magnitude, which may be due to fault growth by linkage (see below), crustal anisotropy (including
layering) and 3D sampling effects. Hence, prediction of fault length from Dmax or vice versa is possible, but only
with a considerable uncertainty, unless the relationship can be better constrained for the region or stratigraphic
section in question.
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Fault initiation

Fault formation from scratch

The initiation of faults in macroscopically homogeneous layers can be explored by physical modeling. Several
studies demonstrate how a fault can develop from an array of minor precursor structures that define a brittle
shear zone and are oriented at an angle to the initial shear zone boundaries and the resulting fault zone (Cloos,
1928; Riedel, 1929; Tchalenko, 1970). These incipient brittle structures tend to be oblique to the zone that they
define, and based on their orientations and sense of slip they have been categorized into R (Riedel) and R0

(antitheric Riedel) shears. Ideally, R and R0 shears form conjugate sets that are bisected by the largest principal
stress direction (σ1). An additional set of P shears that form at low angles to the zone can also occur (Fig. 8.14A).
Examples are shown in Fig. 8.14 from sandstones (B and C), plaster experiment (D) and by a recent strike-slip
earthquake surface rupture pattern (E), and also in gneisses in Fig. 8.15. As displacement accumulates, these pre-
cursor structures start to connect to form a continuous fault zone rather than a simple fault “plane” (Fig. 8.14F).

In other cases, arrays of extensional en-echelon�arranged veins form (Fig. 8.16), particularly in strong rock
layers. A component of ductile deformation is sometimes revealed by the rotation of the central and oldest por-
tions of the veins, generating a sigmoidal vein geometry that at some point will be cut by new veins. Eventually,
the zone will be breached, and a continuous fault zone forms (Fig. 8.15B), similar to the situation described above
for R and R0 structures, and one or more continuous striated slip surfaces form (Fig. 8.15C). In carbonates, stylo-
lites may form perpendicular to the veins (Fig. 8.16), and the orientations of vein tips and stylolites reveal
the orientations of the instantaneous stretching directions (ISA), commonly equated to σ3 and σ1 for idealized
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low-strain situations (Fossen, 2016). ISA1 is the fastest stretching direction and would then correspond (by orien-
tation, not magnitude) to σ3. σ1 would correspond to ISA3, which is the slowest (usually negative) stretching
direction or, in terms of shortening, the fastest shortening direction.

Most rocks are not homogeneous, but involve a metamorphic or depositional layering, which complicates fault
formation and growth. In mechanically stratified sections that are exposed to layer-parallel stress, faults initiate
in the stiffest or strongest layers or sequence of layers, that is layers with highest Young’s modulus. These are
layers where stress is concentrated, and where the rock first yields (e.g. Gudmundsson, 2011). Hence, faults initi-
ate in several different competent layers at more or less the same time in such layered rocks.

Brittle deformation may initiate as shear fractures, extension fractures (joints, fissures or veins) or hybrid frac-
tures. For example, turbidites, with strong sandy and sometimes calcareous layers alternating with mechanically
weak shale (Fig. 8.17A), commonly show evidence of early extension fracturing and vein formation, followed by
linkage as shown schematically in Fig. 8.17B�D. The different orientations of the extension structures (veins) and
the resulting fault, together with any steps formed during linkage, create a zone of deformation rather than a
simple slip plane.

FIGURE 8.14 Early (A�E) and advanced (F)
stages of faulting. (A) Principal sketch showing the
orientation of different kinds of subsidiary struc-
tures: R � Riedel shears, R0 � antithetic or conjugate
Riedels, P � P-shears and ISA � instantaneous
stretching axes. (B�C) Ladder structures in sand-
stone, composed of deformation bands. (D) Plaster
experiment. (E) Surface rupture pattern during the
2010 Canterbury earthquake, New Zealand. (F) Fault
in sandstone showing R shears (R) adjacent to the
main slip surface M. Detail from Fig. 8.3A. Source:
(E) Photo by New Zealand Ministry of Civil Defence &
Emergency Management, used with permission.
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Faulting by activation of preexisting structures

The importance of preexisting planar structures during fault initiation has been pointed out by several authors
(Segall and Pollard, 1983; Martel et al., 1988; Bürgmann and Pollard, 1994; Peacock, 2001; Crider and Peacock,
2004; Pollard and Fletcher, 2005). Preexisting structures that can localize strain and guide fault growth are shear
zones, joints, veins, bedding and dike walls. Reactivation of earlier faults is not included here, as in this case a
fault is already established. Joints are perhaps the most common structure (excluding preexisting faults) that
influence fault nucleation. Segall and Pollard’s (1983) study from the Sierra Nevada, California, is a benchmark
example of the importance of faulting by joint reactivation. Because joints tend to be steep, they are easily acti-
vated as strike-slip faults, given that their strike is favorably oriented with respect to the new active stress field.
However, steep joints reactivated as subvertical faults or slip surfaces are also very common, generating steep
faults or fault elements with complex geometries. Faulted joints are recognized primarily by striated joint sur-
faces and also give faults or fault segments an unusually planar geometry. They differ from primary faults by

FIGURE 8.15 (A) En-echelon fractures forming during incipient stages of faulting. (B) Veins are connected and filled with epidote. (C)
Further shear on the fracture/vein creates striations on a smooth but curved surface. The axis of curvature indicates the slip direction.
Devonian brittle deformation of caledonized Proterozoic gneiss, Øygarden Complex, SW Norway.
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having an initial length that is dictated by the length of the joint. Hence, they are characterized by low
displacement/length (D/L) ratios (Wilkins et al., 2001). Faults formed by joint reactivation can result in a single
sharp slip surface that lacks subsidiary structures such as Riedel shears, with virtually no fault core or damage
zone. As the fault outgrows the joint, however, complications occur, and damage zone and fault core are estab-
lished and grow. An outstanding example of faulting by joint reactivation is the fault population in the grabens
area of Canyonlands National Park, Utah (McGill and Stromquists, 1979). This young fault population formed
close to the surface in a B500 m thick sedimentary sequence containing sandstone layers by faulting of joints
belonging to very regularly oriented and spaced joint sets (Moore and Schultz, 1999). Consequently, the faults
are very straight, but locally take on zigzag geometries as they exploit different joint sets (Cartwright and
Mansfield, 1998). Also, bedding and other lithologic contacts can be reactivated when favorably oriented, as in
the example shown in Fig. 8.18.

Many plastic (ductile) shear zones show evidence of brittle reactivation, particularly large shear zones with
extensive length and width. The reason why faults preferentially initiate on shear zones is related to the mechani-
cal anisotropy that occurs on a range of scales, from microfabrics through outcrop-scale foliation and mylonitic
banding (weak mica-rich layers and stronger quartz-feldspar layers) and contacts between lithologic units with
highly different properties, to crustal-scale anisotropy represented by major shear zones (e.g. White et al., 1986).
Furthermore, large shear zones represent continuous tabular structures that cut through large portions of the
crust. By nucleating on such shear zones, faults can avoid the complicating effect of mechanical stratification and
irregularities that generally characterize the crust.

FIGURE 8.16 En-echelon veins accompanied by stylolitic surfaces. ISA � instantaneous stretching axes.
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FIGURE 8.17 (A) Two conjugate incipient faults forming by linkage of veins formed preferentially in strong layers. (B�D) Schematic illus-
tration of fault formation from rocks with alternating strong and weak layers: Veins form in strong layers (A) and faults form as shear frac-
tures connect veins in different layers (B and C). Source: (B�D) Modified from Crider, J.A. Peacock, D.C.P., 2004. Initiation of brittle faults in the
upper crust: a review of field observations. J. Struct. Geol., 26, 691�707.
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Fault growth

Faults grow by repeated seismic rupture and by more continuous aseismic creep. The San Andreas Fault, for
example, has a long section that accumulates slip primarily by creep, flanked by seismically active segments (e.g.
Scholz, 2002; Titus et al., 2006). In both cases, displacement accumulates over time, and faults tend to get longer
and taller. This is reflected by the positive relationship between displacement and length that can be established
for most fault populations (Fig. 8.13). Faults can grow from small fractures that propagate laterally and vertically
as they accumulate slip, or they can grow by (re)activation of preexisting structures such as older joints or faults.
The first case is an idealized case where (re)activation of preexisting structures is negligible, and where the faults
grow in isolation until they incidentally interact. This model has been referred to as the isolated fault model
(Walsh et al., 2003). Such growth can be studied in physical or numerical models devoid of preexisting
structures.

In nature, preexisting structures are always present and can significantly influence fault growth, as dis-
cussed above. For instance, reactivated joints or weak older faults easily accumulate slip along their entire
length, creating early-stage faults that are long relative to their maximum displacement. Such underdisplaced
faults will accumulate displacement without tip propagation, until they reach a D/L ratio that concentrates
enough differential stress at the tip that propagation can occur. Hence, they can be expected to create vertical
(constant L, increasing D) paths in diagrams such as Fig. 8.13 until they start to propagate beyond the tipline
of the preexisting joint. Data supporting such a joint reactivation model in sandstone are provided by
Wilkins et al. (2001).

Low D/L ratios also characterize incipient and small faults in porous rocks, where faults form in or along
deformation band clusters. In these cases, the deformation band clusters, which are then precursor structures,
follow the trend of cataclastic deformation bands shown in Fig. 8.13, and once a continuous slip surface
forms along this zone, it becomes an underdisplaced fault. Again, displacement can be expected to accumu-
late while the length remains unchanged until a normal D/L ratio is obtained (Fossen and Hesthammer,
1997). From this point onwards, their tips propagate within a tip damage zone of deformation bands that is
maintained ahead of the slip surface (Shipton and Cowie, 2003; Fossen et al., 2007) and typically link up with
adjacent structures.

It is useful to know how fast displacement varies along a fault when predicting fault displacement or mini-
mum fault length away from an observation point (Fig. 8.11C). The average displacement gradient is around
0.1�0.01 for most normal faults (Fig. 8.19). For a gradient of 0.1 or 0.01, moving 1 km along strike changes the
displacement by 100 or 10 m, respectively, provided that we do not cross the Dmax point. As can be seen even
from the simple fault presented in Fig. 8.11B and C, the gradient can change locally along a fault, and the average
gradient can only be used as an approximate estimate of displacement variation, for instance away from a well
location. It should also be noted that individual data sets tend to show a smaller range in displacement gradient
than the global data set (Fig. 8.19). Hence, there are region-specific differences that may relate to mechanical stra-
tigraphy, lithology, degree of linkage, strain (2D vs 3D) and tectonic regime that influence on the displacement
gradient of the fault.

FIGURE 8.18 Activation of bedding planes as slip surfaces in tilted carboniferous turbidites during Triassic rift-related faulting. The
unconformity and Triassic sediments reveal the faulting (Near Sagres, Portugal).
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Fault interaction and linkage

Linkage of faults and fractures occurs at almost any scale, from the linkage of microcracks to form mesoscopic
shear fractures (Reches and Lockner, 1994; Crider, 2015) via the linkage of R�R0 structures shown in Fig. 8.14 to
the linkage of large fault segments up to hundreds of kilometers long (Peacock et al., 2000). Linkage is a funda-
mental process of fault growth and can be observed in any tectonic regime and setting, including thrust (Nicol
et al., 2002), strike-slip (Woodcock and Fisher, 1986) and various extensional settings. The latter will be the focus
of the following discussion.

Whether fault segments form in isolation or by reactivation of older structures, they will at some point interact
with other faults and link up to form much longer faults. In the isolated fault model, this is considered a random
process, but the position and growth of the linking segments can be controlled by preexisting structures. In either
case, the linkage history starts when the fault tips get close enough that their zone of stress perturbation or elastic
strain fields overlaps and influences their propagation paths. As the fault tips pass each other, a relay zone devel-
ops that is characterized by complex small-scale (subseismic) deformation structures, and layers are bent during
the fault interaction. Steepening of the displacement profiles by up to 2.5 times the normal displacement gradient
characterizes this stage, indicating a reduction in the tip propagation rate (Peacock and Sanderson, 1996; Gupta
and Scholz, 2000). This goes together with the observation that the displacement profile of each fault becomes
skewed, with maxima shifted towards the relay structure (Fig. 8.12D). The geometry of relay structures are scale-
independent, with a common length:width ratio of around 3�4 (Long and Imber, 2011) (Fig. 8.20). Fault growth
by linkage is easily documented by simple physical experiments, such as the plaster experiment shown in
Fig. 8.21. Here, several small segments (F2a�d in Fig. 8.21A) link up to form a longer fault (F2 in Fig. 8.21B),
which after its formation accumulates displacement without lengthening (from Fig. 8.21B and C). Extension
beyond the stage shown in Fig. 8.21C would break the ramps between segments F1�F3 and repeat the history of
F2 at a larger scale to form a continuous curvilinear F1�F3 fault trace.

A relay structure or relay zone represents an anomalously wide portion of the fault damage zone sheared by
the two overlapping fault segments. The types of subsidiary structures developed in a relay zone depends largely
on lithology and may encompass deformation bands, slip surfaces, extension fractures, stylolites, veins, dikes
and minor faults, as described in several recent publications (e.g. Trudgill and Cartwright, 1994; Peacock and
Sanderson, 1995; Acocella et al., 2000; Rotevatn et al., 2007; Bastesen and Rotevatn, 2012; Fossen and Rotevatn,
2016). Their density and connectivity depend on the maturity of the relay zone, that is the amount of strain or
displacement accommodated in the zone. Eventually, the two overlapping faults will breach the relay ramp to
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FIGURE 8.21 Progressive evolution of fault zone produced in extensional plaster model (black arrows indicate the extension direction).
Multiple small faults in (A) propagate and coalesce by linkage as strain accumulates. (B) Intermediate stage where several faults have coa-
lesced to form three larger faults (F1�F3). Note that linkage points are preserved as pronounced jogs in fault trace. (C) At this stage, the tip
of F1 has propagated by linkage of smaller faults, while F2 and F3 have experienced constant length (L) growth. If the experiment had contin-
ued, F1�F3 would have linked up to a single continuous fault. Several breached relays can be recognized by fault jogs. Source: Redrawn and
modified from Blækkan, I., 2016. Evolution of normal faults and fault-related damage: insights from physical experiments, Master thesis, University of
Bergen. p. 86.
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form a continuous fault structure. Single-tip or double-tip breaching is possible, and further slip accumulation on
the composite fault will leave much of the relay ramp inactive. The new and much longer fault will initially be
underdisplaced, and a displacement minimum may exist for some time at the linkage point (Faure Walker et al.,
2009). In the length-displacement diagram (Fig. 8.13), linkage results in rapid increase in length of the new com-
bined fault followed by an increase in maximum displacement while the length remains unchanged, that is a hor-
izontal, then vertical path (Fig. 8.12D) (Cartwright et al., 1995). Hence, growth by linkage can explain some of the
scatter in length-displacement diagrams. For lateral linkage controlled by upward propagation of underlying
structures, however, the minima may be erased at initial stages of linkage, and such fault systems are referred to
as kinematically coherent (Walsh et al., 2003).

In general, fault growth by linkage is considered the most efficient and common way for faults to grow in
length. It also occurs in the vertical (dip) direction, as already indicated in Fig. 8.17, as well as in any other
direction. In a more or less horizontally layered sequence, layering plays an important role. Mechanically con-
trasting layers may cause faults to initiate at different stratigraphic levels during strain accumulation, and
extensive linkage occurs as they connect and grow into larger faults. Fig. 8.17 shows how this can influence the
width of the fault zone. Field observations (Fig. 8.22) show a large variation in both fault core and fault damage
zone width in the vertical direction that can be explained by vertical coalescence of fault segments. Hence,
the resulting fault complications and variations in damage zone width and properties depend on lithology,
the mechanical properties of the layers, their thickness, progressive fault rotation and fault displacement
(e.g. van der Zee et al., 2008). Further work is needed on the role of these factors to obtain a useful algorithm
for fault damage zone prediction.

Indeed, faults with any orientation can interact, and they can do so in different ways (Fossen et al., 2005).
Conjugate systems and subparallel faults are already covered above, but abutting situations where one fault
terminates against another are also very common. In this case, a fault tip approaches an already existing fault
and terminates against it. When both faults are active, the new fault will link up to form a kinematically coher-
ent system of three blocks and a Y-type fault intersection. An example is shown in Fig. 8.23, where also another
common feature is seen, known as fault tip deflection near an existing weak fault. This rotation reflects the
stress rotation that occurs around weak structures (e.g. Dyer, 1988), and the fault propagating into the pertur-
bated local stress field of an existing fault may result in a curved fault, as shown in Fig. 8.23B and C. Field
examples show that these types of locations can display quite complicated patterns of small-scale structures
with a multitude of orientations and even types of structures, in an anomalously wide damage zone. In the
area covered by Fig. 8.23, comparison between single fault damage (e.g. location BC) and areas of fault interac-
tion (location CR in Fig. 8.23) demonstrates this fact well, as illustrated somewhat schematically in Fig. 8.24
(see also Johansen et al., 2005).

FIGURE 8.22 Three faults at different stages of evolution, each consisting of several subsidiary elements. (A) Two faults linking up verti-
cally, forming a releasing (extensional) stepover. Extension indicated by veins. Marble Canyon, Death Valley. (B) Fault zone established along
minor (meter-scale) fault, cutting soft-sediment folds. Vertical linkage not completed yet. (C) Mature fault with approximately 100 m offset,
with well-developed fault core and lenses. Latter two examples are from the Neogene-Quaternary Granada Basin, Spain.
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Fault populations

Faults form populations that develop from a multitude of small faults to a more diverse population consisting
of faults with a large range of displacements and lengths. As already emphasized, this evolution involves linkage
of small faults to larger ones, where the largest faults take up most of the subsequent strain (e.g. Cowie, 1998)
(Fig. 8.25). The early small faults that are not involved in such linkage will then become inactive. The extent of

BC

CRBar
tle

tt 
   

Can
yo

nHidden    C
anyon

M
ill

   
C

an
yo

n Courthouse
Rock

T
us

he
r 

C
an

yo
n

C
ou

rt
ho

us
e 

W
as

h

M
oab Fault

R
ailroad

Bartlett Fault Segment

Tusher F. S.

Courthouse Fault Segm. 

?

?

?

Cover

Cretaceous
Morrison Fm
Moab Mbr
Slick Rock Mbr

Normal fault

Dewey Bridge Mbr
Navajo Fm
Kayenta Fm

191

 

 

 

 

 

 

Arches
  N. P.

Moab

Colorado
River

191

10 km

N
1 km

M
oab Fault

Utah

Col.
Plat.

Courthouse
Branch Point

CR

Propagation 
direction

(A)

(B) (C)

FIGURE 8.23 The northernmost part of the Moab Fault and a series of connecting subsidiary fault segments (A). The evolution of these
segments is interpreted in B�C, and involves tip deflection related to stress perturbation near neighboring faults. Hence, the curvature of the
southeastern Courthouse fault segment formed because of the already established Moab Fault. Also, the displacement of the Courthouse fault
segment decreases towards the linkage point with the Moab Fault (CR), consistent with an abutting history. CR � Courthouse Rock locality
and BC � Bartlett Canyon locality.

Single 
fault

Damage
zone

20 m

Branch point

MF

CF

MF

Branch
point
(Y)

(A) (B)
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linkage varies within the deformed region, and after some strain has been accumulated, there will be a distribu-
tion of fault sizes that in many cases can be described by a power-law relationship of the form N5 aS2D, where
S represents a fault size parameter such as displacement or length, N is the cumulative number of faults greater
than or equal to S, a is a constant and D is the power-law coefficient or fractal dimension that characterizes the
relative proportion of large and small faults in the population. D can be used to assess the amount of strain
represented by different size ranges of a fault population, including subseismic faults. The amount of subseismic
deformation depends on seismic resolution and can be substantial where regional data are considered (see
Marrett and Allmendinger, 1992 and Walsh and Watterson, 1992 for further discussion).

In terms of distribution, the largest faults in a faulted region commonly develop a regular pattern with a char-
acteristic spacing. This spacing is in part controlled by the mechanical thickness of the relevant layer, which for
very small faults could be the thickness of a competent sandstone or limestone layer. For larger faults, the rele-
vant layer may comprise a supra-salt sequence, supradetachment hanging wall or thrust nappe, while for first-
order faults with several kilometers of displacement, the relevant layer may comprise the entire brittle crust.
Soliva et al. (2006), who considered this relationship primarily for small faults, found that spacing is typically
about half of the relevant layer thickness. For a 10 km thick brittle crust, this fits well with the B5 km average
spacing observed in most rifts (Morellato et al., 2003).

Even though a multitude of small faults form at early stages of rifting, most of which become inactive, small
faults also form at later stages. Once larger faults are established, small faults and related deformation structures
will potentially form in the fault blocks between these faults in response to complications during further defor-
mation. In terms of stress, this can be explained by the way the existing faults perturb the regional stress field
due to their geometry and relative movements. Hence, both the locations and orientations of new faults will be
controlled by the existing faults and their geometries. Maerten et al. (2002) and Maerten and Maerten (2006) used
geomechanical modeling to make predictions about such smaller-scale faults. They applied a 3D numerical model
to determine the stress conditions in an area containing active N�S trending North Sea rift faults. The computed
stress field around and between the larger faults was then combined with a Coulomb failure criterion to predict

(B)

(A)

(C)

FIGURE 8.25 Schematic illustration of the evolution of a fault population in an extensional (rift) setting. (A) Initial population of minor
isolated faults developing largely perpendicular to the extension direction. (B) Some growth by fault tip propagation creates zones of fault
overlap. (C) Linkage of favorably arranged segments into long- and large-offset faults, with secondary formation of adjustment faults (red)
between the large faults. Note that the late minor faults typically show a large variety of orientations, commonly trending at a high angle to
the large faults.
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the orientations and densities of smaller faults. The result (Fig. 8.26) shows a population of smaller faults with a
large range in orientation, in part similar to the small-scale faults identified from seismic interpretation, and quite
different from the N�S trending major faults.

A somewhat similar fault pattern is observed in the Gullfaks Field fault population in the North Sea rift
(Fig. 8.27B), where N�S trending domino-style rift faults separate smaller faults with many different orientations,
many oblique or perpendicular to the larger faults (red faults in Fig. 8.27B). These small faults abut the larger faults
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 fault Calculated σ2 trend)

1 km

N

FIGURE 8.26 Numerically modelled stress field during E�W extension in the Oseberg Syd area, northern North Sea. The blue faults per-
turb the stress field, and many of the minor (red) faults are oriented in agreement with the local orientation of σ2. Hence, many minor faults
and their great variety of orientations can be explained as having formed after the blue faults were established (but during the same phase of
rifting). Source: Modified from Maerten, L., Gillespie, P. Pollard, D.D., 2002. Effects of local stress perturbation on secondary fault development. J. Struct.
Geol. 24, 145�153.
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FIGURE 8.27 Two fault patterns from the North Sea rift, at two different stages of development. (A) The Beatrice Field (Inner Moray Firth
Basin) where the majority of faults are subparallel and perpendicular to the extension direction. (B) The Gullfaks Field, where several small
faults bound by the larger N�S trending faults have different orientations, making Y- and T-branch points with the N�S faults. Many of the
red-colored faults may have formed at a relatively late stage of extension, due to kinematic complications caused by slip on the larger faults.
Source: (A) Fault pattern extracted from Husmo, T., Hamar, G.P., Høiland, O., Johannesen, E.P., Rømuld, A., Spencer, A.M. et al., 2002. Lower and
Middle Jurassic. In: Evans, D., Graham, C., Armour, A. & Bathurst, P. (Eds.), The Millennium Atlas: Petroleum Geology of the Central and Northern
North Sea. Geological Society, London, pp. 129�155. (B) Fault pattern from Fossen, H., Rørnes, A. 1996. Properties of fault populations in the Gullfaks
Field, northern North Sea. J. Struct. Geol. 18, 179�190.
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and clearly formed in the same tectonic phase, but after the large faults were already established. Kinematically,
these minor faults appear to be adjustment or release structures formed within the relatively long and narrow dom-
ino fault blocks as they deform internally due to geometric irregularities and differential slip on the larger domino-
style rift faults. Hence, a simple first-order model for the fault development in such fault arrays is an early stage of
extension-perpendicular faults (Fig. 8.25A), establishment of some long faults by linkage (Fig. 8.25B), and then the
formation of new small faults in the fault blocks between these large faults (Fig. 8.25C). This model is related to
strain, and the case of Fig. 8.27A, which shows mostly N�S faults, will probably develop into a fault pattern more
similar to the Gullfaks (Fig. 8.27B) or Oseberg Syd (Fig. 8.26) examples.

An important consequence of this evolution is that not all properties of large faults can be assumed to be valid also
for smaller faults in the same region. In particular, small faults may have completely different orientations and distribu-
tions. Hence, small faults cannot uncritically be predicted from knowledge of regional stress or strain fields or by down-
scaling of larger fault patterns, even if they formed in the same regional strain field. Bailey et al. (2002) showed an
example that can be related to seismic resolution, which typically is around 10�20 m for many reflection seismic sur-
veys (i.e. faults with displacement ,10�20 m not being detectable). The map showing only faults with maximum throw
,20 m is remarkably different from the pattern defined by larger faults (Fig. 8.28), and small faults are thus very diffi-
cult to predict from the large fault pattern. For cases where the principal stretching directions change orientation during
deformation, for example extension direction changing during a rift phase, further complications are expected to arise.

In summary, fault populations or networks that show several different fault orientations can form in many
ways: (1) by local stress variations during deformation, as illustrated in Fig. 8.26; (2) by a change in the regional
stretching directions during deformation; (3) by two or more deformation phases with differently oriented stretch-
ing directions; or (4) by reactivation of preexisting structures. Distinguishing between these cases largely relies on
crosscutting relations and tectonostratigraphic constraints. Crosscutting relations can in some cases be difficult to
map from seismic data and require high-quality data and detailed structural analysis (e.g. Duffy et al., 2015).
Tectonostratigraphic constraints, for instance where a set or subset of faults is absent in the younger part of a
sequence or if strain changes abruptly across a given stratigraphic level, are usually easier to identify and employ.
If the deformation history is not clear, the first approach should be to try to explain all elements of a fault popula-
tion with a single phase of deformation (Fossen et al., 2019), for instance with the aid of a geomechanical modeling
tool (Maerten et al., 2002), balancing techniques/kinematic analysis, topological considerations (Duffy et al., 2017)
and modeling of different scenarios of reactivation (Henza et al., 2010; Deng et al., 2017, 2018).

Faults and fluids

Faults and fractures have two important properties; they represent mechanical discontinuities and they gener-
ally conduct fluids. While the first is important to fault reactivation potential, it also relates to their ability to con-
duct water, oil, gas and magma. Flow of fluids along faults and fault networks generate ore deposits, water
resources in solid rock, hydrocarbon deposits, cause leakage of hydrocarbon traps, and guide magma and can
control the locations of volcanoes and hydrothermal springs. The field is wide and complex, and only a few fun-
damental considerations are presented here.

1<T<20 m

5 km5 km

T>20 m

FIGURE 8.28 Fault pattern mapped from a 20 by 20 km2 area from the East Pennine Coalfield, United Kingdom. The orientation defined by
faults with throw (T).20 m are not repeated by smaller faults. Instead, smaller faults show a large subpopulation of NE�SW trending faults. This
comparison shows the challenges of predicting small-scale faults from fault pattern defined by larger faults. Source: Modified from Bailey, W.R.,
Walsh, J.J. Manzocchi, T., 2005. Fault populations, strain distribution and basement fault reactivation in the East Pennines Coalfield, UK. J. Struct. Geol.,
27, 913�928.
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Faults behave differently in porous and nonporous (e.g. magmatic and metamorphic) rocks. In porous rocks,
faults have very different properties in different directions. Cross-fault flow is commonly retarded or stopped by
the fault gauge of the fault core or by unfavorable stratigraphic juxtaposition (e.g. sandstone against shale;
Færseth, 2006). At the same time, the fault can conduct fluids in the vertical direction.

Faults that prohibit cross-fault fluid flow are sealing, and their sealing capacity depends on several factors.
First, the amount of offset is important because more offset generally produces more and thicker fault rock (fault
core) (Fig. 8.5). On the contrary, where shale smear is the seal-forming mechanism, increasing offset also
increases the probability of smear discontinuities that represent leakage points across the fault. Second, the pres-
ence of shale is important because of the likelihood of shale smear formation. The shale smear potential is com-
monly evaluated from simple equations that involve the ratio between the thickness of the shale layer(s)
involved and the fault offset. This is a simple first-order approach and should be used together with case-specific
variables such as burial depth, cementation, shale type, other fault rocks involved, burial/uplift history and so
on (Knipe et al., 1997). Third, juxtaposition, which is a function of fault offset, fault zone architecture and stratig-
raphy, is important primarily because a fault or portion of a fault where reservoir is juxtaposed against itself
(self-juxtaposition) is much less likely to be sealing than any other case. In the case of self-juxtaposition, only a
fault rock can provide a seal, which is unlikely unless intense cataclasis is involved. Where reservoir is juxta-
posed against stratigraphically higher or lower reservoirs, sealing is controlled by smearing of nonreservoir units.
Smear is most effective if those units are represented by shale or clay. Fault seal-controlling factors vary along
faults, and fault surface maps showing variations in juxtaposition, fault rock properties and shale smear factor
can be made to analyse the sealing potential of a fault in three dimensions (Cerveny et al., 2004). For more infor-
mation about fault sealing, see Fisher and Knipe (2001), Færseth et al. (2007) and Sperrevik et al. (2002).

In the vertical direction, through-going slip surfaces and, less commonly, permeable gouge provide continuous
fractures that can open under elevated fluid pressures. Thus faults provide an important means for fluids to
move vertically through the brittle crust. Preferred cementation and mineralization along faults, such as the red-
colored fault zone seen in Fig. 8.29, are evidence of this. Faults as vertical pathways for fluids can be positive in
the context of vertical migration from the source rock into stratigraphically higher reservoir rocks. It can also con-
tribute to vertical communication in an alternating sand-shale type reservoir (e.g. Bailey et al., 2002). However, in
the context of hydrocarbon traps, faults that cut the top seal (caprock) can cause hydrocarbons to migrate out of
the structure and hence deplete or empty the trap.

The influence of faults on fluid flow in a sedimentary basin is closely related to their geometry, connectivity,
distribution and orientation (Fig. 8.30) and hence to their evolution. Laterally segmented fault systems may con-
tain unbreached relay ramps that provide fluid communication across fault blocks. Vertical segmentation with
associated smear reduces both vertical and horizontal communication. On the other hand, fault zones that

FIGURE 8.29 Steep fault cutting sedimentary layers along the flank of the Bighorn Mountains, Wyoming, exposing red color due to iron
oxidation by fluids flowing along the fault.
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distribute offset over several fault elements generally (but not necessarily) improve communication across faults.
Variations in these features along strike, related to the history of lateral linkage during strain accumulation, are
also important, and any consideration of communication must be 3D to be realistic. Fig. 8.30 summarizes typical
structures that are relevant for communication in faulted reservoirs.

Faults in nonporous rocks are conduits of fluids, and the damage zone is usually more important than the
tight core, as it consists of well-connected fractures that can conduct fluids. Near the surface, such zones are
exploited for water. Deeper down, they transport hotter fluids that can deposit minerals and elements of eco-
nomic interest. Fluid flow depends on fracture density and connectivity, both of which tend to be higher in fault
relays, branch points (Fig. 8.24) and transfer zones. Hence cementation, hot springs, hydrothermal activity and
volcanic activity are concentrated in such locations at a range of scales (Bastesen and Rotevatn, 2012; Corti, 2012).
For instance, concentration of geothermal fields in fault stepovers has been reported by Rowland and Sibson
(2004) in a segmented rift system in New Zealand. Increased geothermal fluid activity in fault linkage zones was
also reported by Curewitz and Karson (1997) and by Dockrill and Shipton (2010) who showed that CO2 springs
and seeps were colocated with structurally complex zones in a fault array. Further, magma emplacement has
been correlated with dilational jogs or transverse fault relays (Vigneresse and Bouchez, 1997) and extensional
transfer zones (Dini et al., 2008; Corti, 2012). As for economic geology, the copper mineralization along the
Lisbon Valley Fault and the Dolores fault zones in Utah and Colorado (Breit and Meunier, 1990) are localized at
relay zones, and hydrocarbon leaks are preferentially found along fault relays and intersection points (e.g.
Gartrell et al., 2004). Furthermore, fault jogs, which commonly represent the locations of previous fault linkage
zones, correlate with hydrothermal gold deposits in strike-slip systems (Micklethwaite and Cox, 2004, 2006).

Finally, it is to be emphasized that deposition of minerals from fluids circulating in fault networks generally
leads to a decrease in fault and fracture permeability. Predicting the extent and thereby the influence of minerali-
zation or cementation on permeability is difficult. In many cases, mineralization develops faults into baffles
rather than sealing structures. In addition, fault reactivation will generally break the seal and enhance permeabil-
ity. Thus, in exploration and reservoir evaluations, it is important to relate fault orientation to the in situ stress
field in order to predict their reactivation potential.
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FIGURE 8.30 Some typical structural complexities associated with normal faulting, as discussed in the text. Source: Inspired by Wibberley,
C.A.J., Shipton, Z.K. 2010. Fault zones: a complex issue. J. Struct. Geol. 32, 1554�1556.
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Concluding remarks

Faults are important structures in the upper part of the crust and show wide ranges in size, geometry, anat-
omy and properties. They develop from small-scale secondary structures that form in a brittle shear zone at an
angle to the shear zone boundaries (trend of future fault zone) and that link up to form larger faults that typically
develop a core or slip surface surrounded by a volume of deformed rock (damage zone). However, they also
form by (re)activation of preexisting structures such as joints, dikes, lithologic contacts and foliations where such
structures introduce significant rock anisotropy. Growth by linkage is extremely common and important during
fault growth and cause rapid lengthening of faults and formation of large faults that control much of the subse-
quent strain accumulation. It also creates variable damage along faults, with wider and composite damage
around linkage sites. Furthermore, geometric complications at these sites can create anomalous stress patterns
during continued slip accumulation that produce new faults with orientations that deviate from that of the larger
faults.

Linkage processes and relay structures also strongly control the sealing properties of faults; vertical segmenta-
tion creates shale smear, while lateral ramp formation tends to create pathways for fluids across faults and also
vertically in rocks with little or no primary porosity. Hence, understanding fault linkage processes is important
for hydrogeological as well as economical and hydrocarbon exploration purposes. In general, a fault population
form unconnected or connected elements that change characteristics as more strain accumulates. In general (with
some exceptions), connectivity is enhanced, compartmentalization of porous reservoirs increases, communication
in nonporous reservoirs increases and the pattern of reservoir juxtaposition changes. In conclusion, faults and
their properties are largely dictated by their initiation and early history together with lithologic properties,
including preexisting structure. For instance, distribution of incipient faults influences future linkage patterns
and fault geometries, which again influence stress perturbations that create new faults. Hence, studies of fault ini-
tiation and evolution through time form an important field of research and should continue to receive attention
through numerical modeling, experimental work, field mapping and interpretation of seismic data.
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